Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems
نویسنده
چکیده
The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh, calls for the construction of local-time stepping algorithms. These schemes have already been developed for N-body mechanical problems and are known as symplectic schemes. They are applied here to DGTD methods on wave propagation problems. Key-words: waves, acoustics, Maxwell’s system, Discontinuous Galerkin methods, symplectic schemes, energy conservation, second-order accuracy Caiman est un projet commun à l’INRIA et à l’Ecole Nationale des Ponts et Chaussées, via le Cermics. ∗ Cermics-ENPC et INRIA-Caiman, INRIA, BP93, 06902 Sophia Antipolis cedex Méthodes non-dissipatives de type Galerkine discontinu avec pas de temps local : application des schémas symplectiques Résumé : Les méthodes de type Galerkine discontinu sont maintenant largement utilisées pour la résolution numérique de problèmes de propagation d’ondes. Capables de s’appuyer sur des maillages non-structurés, éventuellement localement raffinés, elles peuvent traiter les géométries les plus générales, tout en restant complètement explicites, facilement parallélisables et adaptables pour obtenir un ordre élevé. Des versions non-dissipatives, conservant une énergie discrète existent. Cependant, la limite de stabilité de ces méthodes explicites est directment liée aux plus petits éléments du maillage et l’introduction d’un pas de temps local permettrait de diminuer considérablement le temps de calcul. De tels algorithmes avec pas de temps local existent en fait déjà dans la famille des schémas symplectiques et leur application à des problèmes de propagation d’ondes avec méthodes de Galerkine Discontinu est considérée ici. Mots-clés : ondes, acoustique, équations de Maxwell, méthodes de type Galerkine discontinu, schémas symplectiques, conservation de l’énergie, précision du second-ordre Symplectic local time-stepping in non-dissipative DGTD methods 3
منابع مشابه
DGTD methods using modal basis functions and symplectic local time-stepping: application to wave propagation problems
The Discontinuous Galerkin Time Domain (DGTD) methods are now widely used for the solution of wave propagation problems. Able to deal with unstructured meshes past complex geometries, they remain fully explicit with easy parallelization and extension to high orders of accuracy. Still, modal or nodal local basis functions have to be chosen carefully to obtain actual numerical accuracy. Concernin...
متن کاملDevelopment of DGTD solver for nanophotonics applications
During the last ten years, the discontinuous Galerkin timedomain (DGTD) method has progressively emerged as a viable alternative to well established finite-difference timedomain (FDTD) and finite-element time-domain (FETD) methods for the numerical simulation of electromagnetic wave propagation problems in the time-domain. We discuss here about the development and application of such a DTGD met...
متن کاملSeismic Wave-Field Propagation Modelling using the Euler Method
Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...
متن کاملLocally implicit discontinuous Galerkin method for time domain electromagnetics
In the recent years, there has been an increasing interest in discontinuous Galerkin time domain (DGTD) methods for the solution of the unsteady Maxwell equations modeling electromagnetic wave propagation. One of the main features of DGTD methods is their ability to deal with unstructured meshes which are particularly well suited to the discretization of the geometrical details and heterogeneou...
متن کاملDiscontinuous Galerkin Time Domain Methods for Acoustics and Comparison with Finite Difference Time Domain Methods
This thesis describes an implementation of the discontinuous Galerkin finite element time domain (DGTD) method on unstructured meshes to solve acoustic wave equations in discontinuous media. In oil industry people use finite difference time domain (FDTD) methods to compute solutions of time domain wave equations and simulate seismic surveys, the first step to explore oil and gas in the earth’s ...
متن کامل